Wnt Regulates Spindle Asymmetry to Generate Asymmetric Nuclear β-Catenin in C. elegans
نویسندگان
چکیده
Extrinsic signals received by a cell can induce remodeling of the cytoskeleton, but the downstream effects of cytoskeletal changes on gene expression have not been well studied. Here, we show that during telophase of an asymmetric division in C. elegans, extrinsic Wnt signaling modulates spindle structures through APR-1/APC, which in turn promotes asymmetrical nuclear localization of WRM-1/β-catenin and POP-1/TCF. APR-1 that localized asymmetrically along the cortex established asymmetric distribution of astral microtubules, with more microtubules found on the anterior side. Perturbation of the Wnt signaling pathway altered this microtubule asymmetry and led to changes in nuclear WRM-1 asymmetry, gene expression, and cell-fate determination. Direct manipulation of spindle asymmetry by laser irradiation altered the asymmetric distribution of nuclear WRM-1. Moreover, laser manipulation of the spindles rescued defects in nuclear POP-1 asymmetry in wnt mutants. Our results reveal a mechanism in which the nuclear localization of proteins is regulated through the modulation of microtubules.
منابع مشابه
The tumor suppressor APC differentially regulates multiple β-catenins through the function of axin and CKIα during C. elegans asymmetric stem cell divisions.
The APC tumor suppressor regulates diverse stem cell processes including gene regulation through Wnt-β-catenin signaling and chromosome stability through microtubule interactions, but how the disparate functions of APC are controlled is not well understood. Acting as part of a Wnt-β-catenin pathway that controls asymmetric cell division, Caenorhabditis elegans APC, APR-1, promotes asymmetric nu...
متن کاملThe long and the short of Wnt signaling in C. elegans.
The simplicity of C. elegans makes it an outstanding system to study the role of Wnt signaling in development. Many asymmetric cell divisions in C. elegans require the Wnt/beta-catenin asymmetry pathway. Recent studies confirm that SYS-1 is a structurally and functionally divergent beta-catenin, and implicate lipids and retrograde trafficking in maintenance of WRM-1/beta-catenin asymmetry. Wnts...
متن کاملAsymmetric cortical and nuclear localizations of WRM-1/beta-catenin during asymmetric cell division in C. elegans.
beta-Catenin can promote adhesion at the cell cortex and mediate Wnt signaling in the nucleus. We show that, in Caenorhabditis elegans, both WRM-1/beta-catenin and LIT-1 kinase localize to the anterior cell cortex during asymmetric cell division but to the nucleus of the posterior daughter afterward. Both the cortical and nuclear localizations are regulated by Wnts and are apparently coupled. W...
متن کاملThe tumor suppressor APC differentially regulates multiple b-catenins through the function of axin and CKIa during C. elegans asymmetric stem cell divisions
The APC tumor suppressor regulates diverse stem cell processes including gene regulation through Wnt–b-catenin signaling and chromosome stability through microtubule interactions, but how the disparate functions of APC are controlled is not well understood. Acting as part of a Wnt–b-catenin pathway that controls asymmetric cell division, Caenorhabditis elegans APC, APR-1, promotes asymmetric nu...
متن کامل08-P006 The Caenorhabditis elegans nuclear receptor NHR-25 controls epidermal T cell differentiation
manipulating spindle by laser, we showed that the spindle asymmetry is essential for asymmetric nuclear localization of b-catenin. Because a kinesin inhibitor disrupted asymmetry of b-catenin localization, we propose that kinesin dependent transport of b-catenin along astral microtubules causes the enhancement of nuclear b-catenin export. This process occurs more efficiently in the anterior sid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 146 شماره
صفحات -
تاریخ انتشار 2011